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Solution of the Boltzmann equation without the relaxation-time approximation
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A method is presented for solving the Boltzmann equation in layered systems without the relaxation-time
approximation. The solution is compared with that obtained using the relaxation-time approximation for
free-electron solids in the presence of boundaries. For the cases studied, most of the differences can be
minimized by using the transport relaxation time. For nonfree electron materials it is expected that the differ-
ences will be more complexS0163-182609)05220-0

I. INTRODUCTION port relaxation time(see Sec. )lis used for the relaxation
time.

The relaxation-time approximation is almost universally In this paper, we develop a method to solve the Boltz-
used to simplify calculations of the conductivity. In mann equation in layered systems without invoking the
multilayer systems, it has recently been used extensivelyelaxation-time approximation. We then calculate the con-
to calculate (see Ref. 1 for reviews the giant ductivity for several situations that involve free-electron met-
magnetoresistancewhich is the change in the electrical re- als with boundaries so that the systems are not homogeneous
sistance that occurs in systems containing magnetic layend the relaxation-time approximation is not strictly valid.
when the direction of magnetization is changed in some offhe calculations are compared to those done using the
the layers. For free-electron models, the resulting simplificarelaxation-time approximation. The cases studied (djea
tion allows analytic solutions when current flow is parallel to single slab of finite thickness, diffuse reflection at the sur-
the interfaces. faces, and an applied electric field parallel to the surface and

A common approach for calculating the conductivity is to (2) an infinite free-electron metal divided by a partially re-
solve the semiclassical Boltzmann equation. A detailed disflecting interface with an applied field perpendicular to the
cussion of the use of the Boltzmann equation in bulk systemiiterface. We find that the relaxation-time approximation de-
is given by Allen® This approach has been applied to scribes the conductivity well as Iong as.the relaxation time is
multilayer systems, using both free-electtaand ab initio chosen to be the transport relaxation time. It should be em-

band structure®.In most situations, solving the Boltzmann Phasized that in more anisotropic situations, suck-and
equation gives similar, if not identical, results to the othermetals rather than free-electron metals, the relaxation-time

; approximation may not be adequate.
common app.roach, e_va'luatlng the Kubo form(dae Ref. 6 p?n Sec. Il, we )éiscuss the goltzmann equation and the
for a d'SCUSS'On.Of this ISSu€ for free elgctr))ns . relaxation-time approximation for free-electron metals. In
If the current is perpendicular to the interface, there is N%Sec. 111, we examine the conductivity for the case of a thin

a_malylgc solu|t|or;,heven Wgth%;relaxanon_-nrr:je ﬁppr(?mmfa-slab’ assuming a free-electron metal and nonspecular bound-
tion. Recently, Zhang and Levynave examined the role of . scattering and in Sec. IV, the resistance at a partially

diffuse and specular interface scattering in this geor;e"ryreflecting interface is calculated for applied fields perpen-
using the relaxation-time approximation. Valet and Fert gicylar to the interface. Section V is a summary of the paper.

used it to study the validity of a previously introduced mac-The formalism for solving the Boltzmann equation in layered
roscopic model. For this geometry a number of workers systems is given in the Appendix.

have studied the resistance due to a single barrier. The most

detailed results were obtained by KubZaho obtained nu-

merical results_for the_z current an_d t_he particle de_nsity as well Il. THEORY

as for the barrier resistivity, again in the relaxation-time ap-

proximation. Scheet al!! have used a simplified model of In this section, we first discuss the Boltzmann equation

bulk transport in conjunction witkab initio calculations of and the relaxation-time approximation, then we discuss the

the transmission and reflection from ideal interfaces to comspecific case of free-electron materials and impurity scatter-

pute the resistances of those interfaces. ing that depends only on the scattering angle. The distribu-
There are two situations in which the relaxation-time ap-tion function is given byf (k) = fq(€y) + (dfo/d€)g(k) in the

proximation is exact. The first case is for isotropic scatteringpresence of an external field, whefg is the equilibrium

which for free-electrons holds when the elastic impurity scat-distribution function. For metals, the changes in the distribu-

tering is described by a delta function. In this case, thdion function can be restricted to energies close to the Fermi

relaxation-time approximation remains exact in the presencenergy because the factéf,/de is sharply peaked around

of spatial variations. The second, more restrictive case occuthe Fermi energy. For the linearized Boltzmann equation, the

when the elastic impurity scattering depends only on thehanges are approximated to occur onlythe Fermi sur-

scattering angle, there is no spatial variation, and the trandace. The linearized Boltzmann equation tpis
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) ag(k) 3 (ag(k) For the case of free electrons scattering elastically from
z

9z T) =ebvyz, (1) spherically symmetric impurities?(k,k’) is a function of
coll the scattering angl@, ,» where cosfy /)=-Q’ and Q

where g(k) is the change in the electron distribution for =k/kg is the direction of the momentum of an electron on
wave vectork restricted to the Fermi surface. The change inthe Fermi surface. In that case it can be shown thabthike
the distribution arises from a field assumed to be constant sp|ution (no spatial variationof Eq. (1) for g(Q) is given
throughout the layer. The distribution also depends on spatiajy!?
position, i.e.,g=g(k,z), but this dependence gf on z will
not be written explicitly. It is assumed that the geometry is 9(Q) = ryan€EvEcog 6), (6)
such that the spatial dependence is only inzkeection; the o
system is uniform in th& andy directions. In Eq(1) Eisthe  for an electric field in the direction, with cos)=()-z. The
external electric field and, , either isv, or v, depending on transport relaxation time is given by
whetherE is in thex or z direction, respectively. The veloci-
tiesv, or v, are thex andz components of velocity at the 1
Fermi surface.

The term that describes collisions with impurities is

ag9(k)
at

:f 40/ P07 (1-0- D), @

Ttrans

Itis determined byP(,Q")(1—- Q- Q') rather than the dif-
_9(k) _f dk'P(k.kg(k)), (2 ferential scattering probability ann@,(fl,_Q’), due to the
To(K) scattering-in term of Eq(2). 7yans Can be interpreted as the
) o relaxation time for the momentum. A small angle electron
where the scattering relaxation time is scattering will not serve to randomize the electron momen-
tum, thus the factor (£ Q- Q') in Eq. (7) is small for small
——=| dk’'P(k,k"), 3 angle scattering. For isotropic scattering, these two times
7o(k)  Jrs and 7y, are equal.
and P(k,k') is the probability of scattering fromk to k’. T_he _I30Itzmann equation in the relaxation-time approxi-
The first term on the right-hand side of E@2), the mation Is
scattering-out term, represents the rate that electrons are scat- A n =
tered out of the stat&. The second term, the scattering-in v 99(€2) n 9()—-g _ E ®)
term, is the rate at which electrons are scattered kjto £ oz Q) o
P(k,k")g(k") being the rate at which electrons are scattered | . ) L
from k' to k. The isotropic part of) is not affected by col- while the Bolt;mann equation without the relaxation-time
lisions. For this part, the two terms on the right-hand side oftPProximation is
Eq. (2) cancel each other. Only the anisotropic partgof N N
relaxes. 99(Q2) N 9()
The relaxation-time approximation replaces E2). with Y7 gz 70(Q)

coll

—f dQ'P(Q,0")9(Q)=eEv,,,

_ 9
dg(k) k)— N
ga(t } 29(7()k) g' (4 where 75(Q2) is given by Eq.(3). In the case of a delta
coll

function scattering potential, i.e., isotropic scattering, 4.
reduces to Eq(8), the Boltzmann equation in the relaxation-
time approximation, withr given by the scattering timey in
Eq. (3).

whereg is the spatially dependent average gfover the
Fermi surface.

— 1
= —J’ dkg(k). (5 lll. THIN SLAB
TJFS

L . . . We now calculate the conductivity of a slab in a free-
If the scattering is isotropic, the scattering probability can b&,jactron model. The slab is confined-tad/2< z< d/2 and is

factored out of the integral in the scattering-in term. Then;pfinite in thex andy directions. The external field is taken to
only the isotropic part of the distribution function remains. In . i thex direction. The slab is shown in Fig(@

this case, the relaxation-time approximation, &), is ex- The Boltzmann equation is given by E() with v
act. For a more general scattering function, the relaxation : o P
time in Eq.(4), 7, is allowed to be different from the scat- ~Ux- Tfe Chaﬁge in th? distribution functiog((2), is la-
tering relaxation timer,. Later in this section, we show that beled.g org dgpen'dlng on whet.he'r the comppnent of
for free electrons with nonisotropic scattering, the transporf’eloc'_ty In _thez_ direction, vC0s(), is 'T‘.‘he positive or
relaxation time, defined below in E(J), is a better approxi- hegativez direction. The boundary conditions are
mation. d

_Up to this point the discussion has been gene(a;ilgp— g*(QSpec):plg*(Q), 7= — >
plicable to a nonfree-electron metal, afil no assumptions
have been made about the dependendeaik,k’. We now
discuss the case of a free-electron metal; the general case is

" o d
— _ + _
treated in the Appendix. 9 (Qeped=pPrg (), 2z=7, (10
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where flspec denotes the direction of an electron that was

traveling in a directionq) and is specularly reflected. The
specularity coefficientp, ,p, satisfy

O$p|’r$1, (11)

wherep=0 denotes completely diffuse scattering gove 1

is the condition for completely specular scattering. It is eas-
ily verified by substitution that the solution of E(B), the
Boltzmann equation in the relaxation-time approximation, in
this geometry is

g+(ﬁ)=(l+ F+e*(d+22)/27‘vzl)eva7.,

9" (Q)=(1+F e @2ivdyery, 1, (12)

wherev,=vgcos@) andv,=uvgsin(f)cos(p). eEv,7 is the _

bulk solution, Eq.(A11), i.e., the solution of the particular _ FIG. 1. Ratio of transport mean-free path to mean-free path. The
Eq. (A8), and the second term on the right-hand side of Eq!nsgt (a) shows the anisotropy of the scattering prob_abllr?y,for

(12) is the solution of the homogeneous equation, @g).  ndicated values of the parameted =0,1,2,3. The main paneb)

The quantitiess* andF ~ are determined by substitution of shows the corresponding ratios of the scattering time mean-free
Eqg. (12) into Eqg. (10). The conductivity per spin is then path to the transport mean-free path.

obtained from We choose a model for impurity scattering of the form

e 1 1fdz . dfg — A a-r222
‘Trta:_E?a 7d/2dzj d3kvxg(Q)¥ V(r)—Ae s (19)
(2m) wherel is a parameter that measures the effective range of
e 1 mk1[d2 the potential andA is the strength. This model is chosen
=—=""—377 4 dzf dQv,g(Q) (13) because it is simple and provides a length sdafer the
E2m)?® #2 dl-az Jrs scattering potential. In general, the defects that cause scatter-

ing are unknown, but should have a finite extent on the order
of atomic dimensions. Below, we obtain numerical results
for kgl = 0, 1,2, 3. In the limit that—0, V(r) is effectively

a delta function so tha®({),Q)’) becomes constant and the
relaxation-time approximation becomes valid. The scattering
probability is given by

wherev= (A/m)k.

In the limit of specular reflectionp,=p,=1, the slab
mimics a bulk metal and the conductivity is given by the
bulk value,

_nér

-
" m

(14

A O — 3. ni(k—k')-r
wheren is the number of electronger spin per unit vol- P(Q,07) f d’re V), (20)
ume, e is the electron charge, amd is the electron mass. i

Because we are interested in deviations from bulk behaviorn the Born approximation. Botk andk” lie on the Fermi
we focus on the diffuse limit. For the case of purely diffusesurface' The model scattering potential is spherically sym-

. _ _ metric so thaP depends only on the angle betwdeandk’,
scattering,p;,p,=0, and F*=—1, F-=—e ¥7lvd The : . ,
conductivity for this case was first given by Sondheithes the scattering angléy . - Use of Eq.(19) in Eq. (20) gives

P(0,0')=P(6 ) =Be ke*Acost) (21
Orelax 3 3 (= 1 1 —st . o .
=l-got o] dtff z——|e 7, (15) wherekg is the Fermi momentum. For a givdal, B deter-
o 8s 2s); t3 5 ) o ) :
mines the relaxation time. Figurdd) shows the anisotropy
where one has of the scattering probabiliti? as the parametdel takes the
values 0,1,2,3.
d Use of Eq.(21) in Egs.(3) and(7) gives the ratio of the
SZFF- (16) scattering time to the transport relaxation time, which is
o equal to the ratio of the scattering mean-free pegtto the
The |Im|t|ng forms of EC](].S) are transport mean-free path
o 3 22_2a—1
ﬂzl_g_, s>1, (17) 70 _ )\0 :(e a )’ (22)
0o S Ttrans  Mtrans (aeza— a)
and wherea= (kg )? (see Fig. 1 The transport mean-free path is
iven b
@;EM(E) s<1 (18 ’ ’
Jo 4 S . A trans™ UFTiranss (23
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. (€) d=hyrans/2 0 1 2 3 4 5
Y7 171 d /A teans
(d) d=2X trans
~~~~~~~~~ ] FIG. 3. Conductivity of a thin film. For the indicated values of
kel =0,1,2,3, the main panel and the inset show the ratio of exact
3 numerical conductivity to that calculated using the relaxation-time
o ] approximation as a function of the ratio of the film thickness to the

1 0 1 transport relaxation-time mean-free path. The inset shows the re-
" gion where the rati@/\ ., is very small.
trans

FIG. 2. Cur_rent dis_trit_)utign in_a th_in film. Pané&) shows the We now assume purely diffuse scattering at the bound-
geometry of thin slab indicating direction of current. Pane)s(d) — 5ieq and we compare the current density calculated without
show th.e exact current dgns'@m'd “r?e) a.nd current density cal- the relaxation-time approximation to that calculated with the
culated in the rela).(at'on.'t'me ap.prox'mat'mShed ling for sev- relaxation-time approximatiofusing the transport scattering
eral values of the film thickness in terms of the transport mean-fre%me and mean-free pathThe resulting current densities are

ath. o . ; .
P shown in Fig. 2 for three different values of the film thick-
Ness;d=Nyand 8, Nyans/ 2, and A0 The results can be
understood as follows. For the case shown in Fidp),2d
= \uand 8, the “exact” current is less than the relaxation-
. : . time approximation current for all values nfBecause of the

The. soll_mon of thg Bolltzm_ann. equation without the diffuse scattering at the walls there are fewer electrons avail-

relaxation-time approximation is given in the Appendix.

There, the distribution function is discretized onto a mesh oftPle there to scatter into a stdtefrom some other stat@’

pointsk on the Fermi surface, and the Boltzmann equation €S ¢an be seen from the second term on the right-hand side of

solved on that mesh. For the thin film considered here, th&U: (2). This means that the scattering time near the walls
solution on that mesh can be written will be shorter than in the bulk and consequently the current

will be smaller. The relaxation-time approximation is correct
only for the uniform bulk situation and does not take proper
0 k= Tran€Evit > &€ N, account of the effects of the boundary conditions, eyg.,
;>0 =0 atz=—d/2[Eq.(10)], thus it over estimates the amount
of scattering “in” from the second term on the right-hand
_ N side of Eq.(2). As the electrons move away from the wall
9 k= TtranseEUkXﬂZO &ie M Xk (24 they lose their memory of it on a length scale of the mean-
' free path. The exact solution has a shorter mean-free path

whereg, is the value ofg at a pointk on the Fermi surface. near the walls and so it approaches the bulk current density
For a free-electron modek, denotes a particular value 6f at a faster rate than the relaxation-time approximation cur-
The superscript- or — refers to states moving in the posi- rent, hence, the crossing of the currents in Fig).2Figure

tive or negativez direction, respectively. The first term is the 2(d) is for a larger value of the slab width and shows the
driving term for the Boltzmann equation, the right-hand termapproach of the currents_to the bL,{Ik valge. o

in Eq. (1). The quantitie;; and\; are the eigenvectors and Figure 3 shows t_h_e ratio of the _exact condu_ctlwt_yto
eigenvalues, respectively, of the operator for a form of thethat .Of the conductlv_lty cqlculated in the relaxation-time ap-
scattering matri{see Eqs(A7), (A10), and(Al4)]. The ¢ prOX|mat|pn Tra 8gaIN USING the transport me an-free path
are determined from the boundary conditions, @4). Elec- Arans: Tis ratio is plotted Versus/\ s for various values

trons moving to the right must relax towards the bulk value_Of the parametekel in Eq. (21). Forkel =0, the scattering is

of g as they move away from the left interface, hence thelsotropic, corresponding to a delta function scattering poten-

restriction \;>0 in the first line of Eq.(24). The current tial. As dispusged earli.er in the'paper, the rglaxation-time
density as a function of position is given by approximation is exact in this limit and the ratio of conduc-

tivities is unity. In the limit of larged/\ s, the electrons do
not see the boundaries. In this isotopic situation the
1 40 vxg(ﬂ). (25) rela>_<a_ti_on-time approximation is exact and the ratio of_ con-
(2m)° 7% Jes ductivities approaches one. For very sntlh ;406 the ratio

of conductivities behaves as shown in the insert of Fig. 3 and
In practice, this is evaluated by a sum over the discrete mesltan be understood as follows. Equati@tB) gives oy

and we will take\a,s t0 be the mean-free path when the
relaxation-time approximation is use@d— 7y, and ver

— Nyrans:

j(z)=—e



13342 D. R. PENN AND M. D. STILES PRB 59

0.04 - ; " ] chemical potential difference at the interface is labeled 0.
A : Charge neutrality is imposed by identifyilgg- g as the elec-
tron distribution and- dg/dz as the additional electric field
required to maintain neutrality. The interface resistivity is
given by the ratio of the extrapolated chemical potential dif-
ference divided by the current through the interface.

In this geometry, the relaxation-time approximation to the
Boltzmann equation cannot be solved analytically as can be
done when the current is parallel to the barrier. The Boltz-
mann equation is given by

agi(Q)  gi(Q) oA R
—— | dQ'P(Q,0")gi(Q)')=eEv,,
pm +ro<m f (Q,0)g(Q")=e .

wherei=1,2 denotes the metal to the left or right £ 0,
FIG. 4. Variation of chemical potential near an interface with arespectively. The scattering probability is given by Ezfl).

perpendicular current. The dashed lines indicate the chemical poxg previously, the change in the distribution functigmﬁfl)
tentials far from the interface and the solid line includes the contri i 'he Iabele('jg+ or g~ depending on whether the compo-
bution of the exponential terms. In pané# and (b), the external

electric field is, respectively, not included and included. %hand nent of velocity in thez direction,vcos(), is in the positive

0 label the potential drop associated with the interface far from theOr negativez direction. The boundary conditions 2+0 are

interface and at the interface, respectively. The calculations use “=R + -
= +T
kel =1 andn=8 [see Eq(28)]. 91 1191 1292

92" =Ro8y +T210:", (27

~dIn(\yans/d). As described above, the relaxation-time ap- . . . L
proximation overestimates the mean-free path for electron¥N€reRi is the probability that an electron in regionis
near a diffusely scattering boundary. If we assume the exadgflected back into andTj; is the probability that the elec-
conductivity takes the fornd IN(Ags/d) Where X o<\ yans tron is trans.ml_tted from r.eglonmto regioni. The reflection
then o/o—1 as d/\gge—0 and ofo,, decreases as and transmission coefficients are modeled as
d/\yans increases from zero in agreement with the behavior
shown in the inset of Fig. 3. However, there will be quantum Ri.(6)=1-T;(0)=
effects in the regiord/\ <1 that are not treated by the " !
Boltzmann equation. . o

It is clear from the strong dependencelgf,, /Ao onkg ~ Where 6 is the angle of incidence and andn are param-
shown in Fig. 1 that the good agreement between the «ex€ters. This form is a generalization of the re¥luior a sheet
act” conductivity and that calculated using the relaxation-delta function potential of strengfhv g/ atz=0, for which

time approximation depends on the use of the transport rg?= 2. A sheet delta function with an appropriate amplitude is
laxation time. a good approximation for the low-energy reflection from pla-

nar defects, like stacking faults, where the electronic struc-
ture is the same on both sides of the interfatEor inter-
IV. AN INFINITE METAL DIVIDED BY AN INTERFACE faces between dissimilar materials, reflection is more
complicated. To examine a range of behaviors while main-

m \:v? dri:)i;v gobnadr(]arintth(rafacaset:o (f) algl '2{:”';6’":r?g'ilfcgontaining a simple form for the reflection, we generalize the
cta ed by a ertace @-u. Electrons inciaent o exponentn to other values.

the interface are reflected or transmitted with a probability The boundary conditions requirg to not diverge far
1

that depends on their angle of incidence. For current perpen: . : :
dicular to the interface, the current density must be con?rom the interface, thus the solution given by £420) and

served and is thus constant, independent.dBesides the Eq. (AL1) takes the form
resistivity due to impurity scattering there is an additional
resistivity due to the fact that there will be only partial trans-
mission across the interface. To force a finite current through F (1) niz
the partially reflecting interface, it is necessary to build up a +AZO &e Nk,
finite chemical potential difference across the interface. In '

general, the chemical potential will also have an exponential-
like dependence omthat decays away from the interface on
both sides. Figure 4 shows the behavior of the chemical po- (D) iz
tential near the interface. In Fig(a} the variation due to the +A§>:0 &7 N ks (29
external field is not included and in Fig(b} it is. In both :

panels, the dashed lines show the extrapolation of the chemin regions 1 and 2. The first term on the right-hand side of
cal potential difference far from the interface back to theEg. (29) is the bulk solution in layei for field E;. The
interface, this difference is labeled in the figure. The second term represents a uniform shift in the Fermi energy

Uz

d/ A rans

_— 28
a+cos'(6) 28

91k= Tran€ Evio+ €2+ M (22— 7))

2 2
92k= Tyran€ EV iz T gg) )Zk+ fg. )(Zkz_ z')



PRB 59 SOLUTION OF THE BOLTZMANN EQUATION WITHOUT ... 13 343

becausez,=1 and f=fgy+(dfy/de)g. The third term is 6f
given by Eq.(A16) and it is clear from Eq(A19) that unlike b
the second term, it carries current. If the correct valu&of 5 F
is used in the first term, thes{"=0, otherwise this term B |
essentially correct the field and the associated current flow. L
The exponential terms do not carry current perpendicular to ol

the interface because current conservation is incompatible 100
with an exponential variation.

The interface resistanc®, is given by the relatiol\V
=IR whereAV= (&M - £{?))/e is the potential drop across
the interface andl= jA wherej is the current density through
the interface and\ is the cross sectional area of the interface.
The interface resistancR, is the additional resistance of the

on

€EMtrans ‘

100

0
sample due to the interface. It is useful to define an addi- 00 c0sO Lo

tional resistancéR, to be the total potential drop at the in- _
terface divided by the current. It is obtained by repla@ﬁg\] FIG. 5. Angular dependence of current though an interface.

Panel(a) shows the current density, E2), for various values of
a as a function of co#l). Panel(b) shows the “chemical potential”
Su, Eq. (33), for various values ofr as a function of cogl). The
calculations usé&g =1 andn=38.

above byES) + Spexpi(z=0). Speyi(z=0) is the change in
the Fermi energy at the interface in regioal,2 due to the
exponential terms in Eq29) and it is given by the Fermi
surface average of those terms evaluatez=a.

The current density is

Su=(92"+0g2 )= (91" +017), (3D
mke whereg;* refers to an electron moving to the right in the
j(z2)=—e 3 5 | dQ v9(), (30)  direction{) andg;~ refers to an electron moving in a direc-
(2m)° h% JFs tion corresponding to specular scattering at the interface, i.e.,

) 60— (m— 6) and¢— ¢. The quantitieg; = correspond to the
and is constant throughout the metal. same value of momentum parallel to the interface. We also
The discretization of) is such that), takes onN values  define
in each region so the boundary conditions E&y) constitute
N equations. There arbi/2—1 values of¢*) and N/2—1 8j=(gi" —gi )cod 0), (32)

2) 1 2) 1
vgl)ues Offi( in E(% (29 ?2? well as_gg ), 8), f(l ), and where conservation of current requir@sto be independent
1 - We choosess = — £ =&, which corresponds 10 @ of j for interfaces with no diffuse scattering, as we consider
relative shift in the Fermi energies in regions 1 and 2 corregre.
sponding to a potential difference between the two regions ini i
created by the applied field. As discussed aba{®=¢{" Combining Eqs(27), (28), (31, and(32) gives
=0, because the current density is equal to its bulk value Spu=—2a dj/cos'*1e, (33
everywhere. With these choices we can figg ,g, and ) i i .
calculate the interface resistane,as well as the resistance Which can be solved byu>a and 5j=cos™ 6. We find
at the interfaceR,. that th.IS solution holds in the limit that— o, where strong
The termzz— 2z’ [see Eq(A16)] can be understood as an reflection for all angles glves_a_lar@L only vv_eakly depen-
electrochemical potentialthe gradient of which gives a dent on angle. From Eq29), it is clear thatsj depends on
field) and an associated current flow. In the general case dhe & terms, the coefficients of the exponentially varying
perpendicular transport, the bulk conductivities will differ terms, and not oi,, while 5w depends on both thg and
from layer to layer, so the internal fields will be different o- We conclude that for larger, o< while the & are
from layer to layer. One way to solve for the overall conduc-foughly independent o&. Since the exponential terms de-
tivity is to impose a bulk-current density at infinity, and then Pend strongly or¢, §j has a strong angular variation in this
solve the boundary conditions from layer to layer to deterlimit. This behavior for largew is illustrated in Fig. 5 for
mine the internal fields. In this approach, the solution  Vvalues ofe corresponding to strong reflection. For small
— 7' plays a crucial role in each layer. An alternate approactPn the other hand, the reflection is weak near the zone center,
is to solve the particular equation in each layer and find th&€0s@)~1, and the current distribution is very close to the
field that is necessary to make the current the same in eadiilk distribution, co§6). This, in turn leads to a strong de-
layer. In this approach, the solutiz—z' plays no role, pendence obu on #. The consequences of the limiting be-
because it has already been accounted for by the particul&@viors ofa behavior are shown in Figs. 6 and 7.
solution and the field. We have used this latter approach in As a function ofa, Figs. 8a) and @) show the interface
the work described here. The relationship between z’, resistancdR,,, the resistance calculated using the relaxation-
the fieldE, and the particular solution is given by E&19).  time approximation to the Boltzmann equation, E8), and
The behavior of the interface resistance can be understodfie transport lifetime. The linear dependenceRqf on « is
in greater detail by examining the current density anda direct result of the fact that the interface resistameis
“chemical potential” as a function of position on the Fermi given by the relatiodV=IR whereAV=(§61)_§82))/e and
surface. It is useful to define o~ a.
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6 @ ' ' The fact thatR/R,;;—1 implies that the exponential terms
- ] become constant, independentaffor large .
Rua | 1 Figures &c) and 7c) show the interface resistance differ-
R, [ ‘ 1 ence,R—R,, versusa for kgl =0,1,2,3. The differenceR
— Ry, depends only on the exponential terms which do not
0 . . . depend orx for large «, hence, the saturation of the curves.
1.01 f ; ; - ] The casen=1 is a special case where there is no expo-
j-(b) 3 nential contribution to the charge density, the terms on the
R L 3 right-hand side of Eq(29) vanish. In that case the interface
'S 193 1 resistance is given by
R=2 6m°m 2aR (34
=L =Za .
AekE "

This quantity is identical to the resistance that describes the
total potential drop across the interface, and there are no
corrections to the relaxation-time approximation.

V. SUMMARY

o A method is presented for solving the spatially varying

FIG. 6. Interface resistance as a function of reflection strengthl.goltsz'Jmn _equat'o_n without the making the_ relaxatlon-tlm_e
Panel(a) shows the interface resistance calculated in the relaxationappr_ox'mat'on' Th's methOd 1S prgsented in the Append|x
time approximation with the transport lifetime versasfor n=2, and |nvoIve§ a discretization of pqmts on the Ferml surface.
see Eq(28). The resistance is scaled By =67m/(Ae’k3). Panel ~ 1he scattering terms can then be inverted by matrix methods

(b) shows the ratio of the exact barrier resistance to that calculate@nd the spatial part of the equation can be dealt with analyti-
in the relaxation-time approximation with the transport lifetime for cally.

ke =1,2,3. Panelc) shows the difference between the interface  The solution is compared with that obtained using the
resistanceR related to the potential drop in Fig(a} labeled and  relaxation-time approximation for free-electron solids in the
that labeled 0. presence of boundaries. The cases studied(@re single
slab of finite thickness with nonspecular reflection at the sur-
faces and an applied electric field parallel to the surface and
(b) the case of an infinite free-electron metal divided by a
r;Partially reflecting interface with an applied field. For the
cases studied, most of the differences can be minimized by
using the transport relaxation time. For reasonable values of
the parameters maximum differences in conductivities or re-
sistances are of order 10% and typically the differences are

Figures &b) and qb) are plots of the ratidR/R,. The
curves are for the valuds! =0,1,2,3. The relaxation-time
approximation to the Boltzmann equation using the transpo
lifetime corresponds té&gl =0. The independence &/R,,
on « also follows from the linear dependence &f on «a.

15 P ' ' ] considerably smaller. For nonfree-electron materials it is ex-
- pected that the differences will be more complex because the
Rea | ] transport relaxation time is exact only for an isotropic bulk
| material.
A b b
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APPENDIX

In a homogeneous layer, the linearized Boltzmann equa-
tion to be solved is, from Eqg¢l) and(2),

a9(k)  g(k) S
52 + 7o(K) —jFSdk P(k,k")g(k")=A(k),

(A1)

00° ' ' ' whereA(k) is the term due to the external electric field. The

’ ’ solutions from several layers can be joined together using the

boundary conditions between the layers to give the result for
FIG. 7. Interface resistance as a function of reflection strengtha composite structure. In order to solve EA1) we dis-

Same as Fig. 6, but far=8. cretize it

Uz
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Gk

9k
Uk, +T—_2 APy 9 = Ax,

k K’

(A2)

wheregy is the value ofg at a pointk on the Fermi surface
andA, is a weighting factor such that

> Aﬁf dd, (A3)
X
and
1
—=2 APk (A4)
Tk K’

whereP ., is symmetric.

The spatial dependence of EGA2) can be solved by
finding the solutions to the particular and to the homoge
neous equations. The particular equation is

Ok
== AP =Ax, (AS5)
Tk K’
while the homogeneous equation is
B S AePeiog=0 (A6)
Vzk o S k' Pk Gk =0.
It is useful to define
Sk k!
Bk,k’:__Ak' Pk,k’ f (A?)
Tk
so that the particular equation, E@5), becomes
> Biw Ok =Ax, (A8)
k!

and the homogeneous equation, E&6), is written as

>

J
r—+ VilB ! P =
< Ok k 97 [ ik |9k =0,

(A9)

where one has

Vk,k’:UZkgk,k’ . (AlO)

The matrice® andV B are both asymmetric and singular,
Sincezkr Bk,k’ =0.

For the free-electron case whé&ndepends only on scat-
tering angle, the solution of EqA8) is given by Eq.(6),
which in the notation of this appendix is

k= Tirandk » (A11)
where 7,415 1S given by Eq.(7).
In general, Eq(A5) has the formal solution
(A12)

gk=> By oA,
kl

but the matrixB, ,, is singular. The eigenvectar, corre-
sponding to the zero eigenvalue Bfhas constant compo-
nents,z,=1, because

SOLUTION OF THE BOLTZMANN EQUATION WITHOUT ...
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(B2)y= 2 Bywzio=2 By =0. (A13)
K’ K’

If Eq. (A6) is satisfied by ay theng+ constank z is also a
solution. The solutions of EqA12) for g, that are of physi-
cal interest can be obtained numerically from the singular
value decomposition oB. The numerical solution we use
gives a result that is orthogonal ®. For the free-electron
case, wherP depends only on scattering angle, the first term
on the right-hand side of E¢A20) is given by 75, -

The homogeneous equation, E&9), can be solved as
follows. Denote the right eigenvectors 6 1B by x; and the
corresponding eigenvalues hy where

V7IBX=\X;. (A14)

Then the expression

g=2 &e i, (A15)
I

is seen to be a solution of EGA9) by substitution. The;
are constants to be determined by the boundary conditions.

A complication is that, folV~ 1B, the zero eigenvalue is
doubly degenerate with the same eigenvegtas discussed
above. The matrix is referred to as defective and is said to
have a nontrivial Jordan block. Consequently, the two terms
that correspond to zero eigenvalugs= 0, are not included
in Eq. (A15) because they have a different form. The con-
stant terméyz is one additional term in the solution. Because
the eigenvalue is degenerate there is another solution of the
homogeneous equation, E@\9),

&1(zz—7"), (Al6)

where one has

z =B vz (A17)

The fact thatzz—z' is a solution of Eq(A9) can be verified
by substitution. We note that is only defined to within an
additional term proportional ta. The numerical procedure
we use to obtaiz’ gives a result that is orthogonal 0.

When the electric field is in thedirection, which is trans-
lationally invariant, the ternzz—Zz' does not play a role,
because there is no current flow in thalirection and the
coefficient ofz’ must be zero, so the term is discarded. How-
ever, in the case that the electric field is in thdirection,
zz—7' is an essential part of the solution fgr In that case
Eq. (10), the solution for the bulk value af becomes

Opuk=B 'eEv,=eEB Vz. (A18)
Comparison with Eq(A17) gives
Obui= €EZ". (A19)

Thus,z’ is proportional togy,, and the second term on the
right-hand side of Eq(A16) is one that carries current. The
linear z-dependent portion okz—2z', which can be inter-
preted either as a chemical potential gradient or an external
field, implies the current carrying pazt.

From Eqs(A12), (A15), and the discussion following Eq.
(A15), our final result is



13 346 D. R. PENN AND M. D. STILES PRB 59

. , The particular solution and the two terms associated with
= By Ak + ozt €1(zz— z)+> e N, zero eigenvalues control the current and the constant part of
k' : the field in each layer. The exponential terms also have an
(A20) isotropic part and contribute to the variation of the field, but

) they do not carry current perpendicular to the interface. Only
where the); are given by Eq(A14) and the¢ are to be e harticular solution and they(z,z—z)) terms carry cur-

determined by the boundary conditions. The two values of rent in that direction. While the exponential terms do not

for which A\;=0 are excluded from the summation in EQ. carry current, they do change the angular distribution of the
(A20). If the correct fieldE is used to find the particular cyrrent. This redistribution is why these terms are important
solution, the first term in Eq(A20), then &; will be zero.  near interfaces. They change the angular dependence of cur-
Otherwise, the tern§;(z,z—z;) will compensate to give the rent distribution from that of the bulk to that which gets

correct field and current. through the interface.

1p. M. Levy, Solid State Phyg7, 367(1994); P. M. Levy and S. Magn. Mater.151, 363(1995; R. K. Nesbet, J. Phys.: Condens.
Zhang, J. Magn. Magn. Matefl64, 284 (1996; P. B. Allen, Matter 6, L449(1994); J. Magn. Magn. Materl59, L17 (1996.
Solid State Communl02, 127 (1997). 6X.-C. Zhang and W. H. Butler, Phys. Rev.H, 10 085(1995.

2M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. 7s. Zhang and P. M. Levy, Phys. Rev.5, 5336(1999.
Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas8T. valet and A. Fert, Phys. Rev. 88, 7099(1993.
Phys. Rev. Lett61, 2472(1988; G. Binasch, P. Gmberg, F.  9R s Sorbello, Phys. Rev. 89, 4984(1989; B. Laikhtman and

Saurenbach, and W. Zinn, Phys. Rev38 4828(1989. S. Luryi, ibid. 49, 17 177(1994; R. Landaueribid. 52, 11 225
3p. B. Allen, inQuantum Theory of Real Materialsdited by J. R. (1995.

Chelikowsky and S. G. LouiéKluwer Academic Publishers, 10c Kunze Phys. Rev. B1, 14 085(1995

4RB°ES“?' 1|995 4 1 BarhaBhve. Rev. Letica 664(108a. 5. K M- Schep, J. B A. N.van Hoof, P. J. Kelly, G. E. W. Bauer,
- E. Camley and J. BamaBhys. Rev. Lett63, 664 (1989; J. and J. E. Inglesfield, Phys. Rev. &5, 10 805(1997).

BarnasA. Fuss, R. E. Camley, P. Guberg, and W. Zinn, Phys. 15 . . .
) N J. M. Ziman, Electrons and Phonon&xford University Press,
Rev. B42, 8110(1990; R. Q. Hood and L. M. Falicovbid. 46, London, 1960, p. 268.

8287(1992. 13E . H. sondhei Phys. Re80, 401 (195
SW. H. Butler, X.-G. Zhang, and J. M. MacLaren, IEEE Trans. - 1. sondheimer, Fhys. ’ (1950.

14 . . .
Magn. 34, 927 (1998; P. Zahn, |. Mertig, M. Richter, and H. G. .Baym, Legtures on Quantum Mechani¢Benjamin Cum-
Eschrig, Phys. Rev. Letf5, 2996(1995; I. Mertig, P. Zahn, M. mings, Reading, MA, 1969p. 113.
Richter, H. Eschrig, R. Zeller, and P. H. Dederichs, J. Magn. M. D- Stiles and D. R. Hamann, Phys. RevAg, 5280(1990.



